Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 21(24): 10346-10353, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34854686

RESUMO

Light molecules such as H2O are the systems in which we can have access to quantum mechanical information on their constituent atoms. Here, we have investigated electron transport through H2O@C60 single molecule transistors (SMTs). The H2O@C60 SMTs exhibit Coulomb stability diagrams that show multiple tunneling-induced excited states below 30 meV. Furthermore, we have performed terahertz (THz) photocurrent spectroscopy on H2O@C60 SMTs and confirmed the same excitations. From comparison between experiment and theory, the excitations observed below 10 meV are identified to be the quantum rotational excitations of the water molecule. Surprisingly, the quantum rotational excitations of both para- and ortho-water molecule are observed simultaneously even for a single water molecule, indicating that the fluctuation between the ortho- and para-water states takes place in a time scale shorter than our measurement time (∼1 min), probably by the interaction between the encapsulated water molecule and conducting electrons.

2.
Nat Commun ; 12(1): 6006, 2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34650059

RESUMO

Detection and characterization of a different type of topological excitations, namely the domain wall (DW) skyrmion, has received increasing attention because the DW is ubiquitous from condensed matter to particle physics and cosmology. Here we present experimental evidence for the DW skyrmion as the ground state stabilized by long-range Coulomb interactions in a quantum Hall ferromagnet. We develop an alternative approach using nonlocal resistance measurements together with a local NMR probe to measure the effect of low current-induced dynamic nuclear polarization and thus to characterize the DW under equilibrium conditions. The dependence of nuclear spin relaxation in the DW on temperature, filling factor, quasiparticle localization, and effective magnetic fields allows us to interpret this ground state and its possible phase transitions in terms of Wigner solids of the DW skyrmion. These results demonstrate the importance of studying the intrinsic properties of quantum states that has been largely overlooked.

3.
Sci Rep ; 10(1): 10674, 2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32606323

RESUMO

To identify the decoherence origin, frequency spectra using multiple π-pulses have been extensively studied. However, little has been discussed on how to define the spectral intensities from multiple-echo decays and how to incorporate the Hahn-echo T2 in the noise spectra. Here, we show that experiments based on two theories solve these issues. As proved in the previous theory, the spectral intensity is given as the decay in the long-time limit. Unlike the initial process of decays, this definition is not only theoretically proven but also validated experimentally, since long-time behaviors are generally free from experimental artifacts. The other is the fluctuation-dissipation theory, with which the Hahn-echo T2 is utilized as the zero-frequency limit of the noise spectrum and as an answer to the divergent issue on the 1/fn noises. As a result, arsenic nuclear spins are found to exhibit 1/f2 dependences over two orders of magnitude in all the substrates of un-doped, Cr-doped semi-insulating and Si-doped metallic GaAs at 297 K. The 1/f2 dependence indicates that the noise is dominated by a single source with characteristic frequency fcun = 170 ± 10 Hz, fcCr = 210 ± 10 Hz and fcSi = 460 ± 30 Hz. These fc values are explained by a model that the decoherence is caused by the fluctuations of next-nearest-neighboring nuclear spins.

4.
Nat Commun ; 9(1): 2215, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29880822

RESUMO

Nuclear resonance (NR) is widely used to detect and characterise nuclear spin polarisation and conduction electron spin polarisation coupled by a hyperfine interaction. While the macroscopic aspects of such hyperfine-coupled systems have been addressed in most relevant studies, the essential role of local variation in both types of spin polarisation has been indicated in 2D semiconductor systems. In this study, we apply a recently developed local and highly sensitive NR based on a scanning probe to a hyperfine-coupled quantum Hall (QH) system in a 2D electron gas subject to a strong magnetic field. We succeed in imaging the NR intensity and Knight shift, uncovering the spatial distribution of both the nuclear and electron spin polarisation. The results reveal the microscopic origin of the nonequilibrium QH phenomena, and highlight the potential use of our technique in microscopic studies on various electron spin systems as well as their correlations with nuclear spins.

5.
Nat Commun ; 8: 15084, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28425462

RESUMO

Resistively detected NMR (RDNMR) based on dynamic nuclear polarization (DNP) in a quantum Hall ferromagnet (QHF) is a highly sensitive method for the discovery of fascinating quantum Hall phases; however, the mechanism of this DNP and, in particular, the role of quantum Hall edge states in it are unclear. Here we demonstrate the important but previously unrecognized effect of chiral edge modes on the nuclear spin polarization. A side-by-side comparison of the RDNMR signals from Hall bar and Corbino disk configurations allows us to distinguish the contributions of bulk and edge states to DNP in QHF. The unidirectional current flow along chiral edge states makes the polarization robust to thermal fluctuations at high temperatures and makes it possible to observe a reciprocity principle of the RDNMR response. These findings help us better understand complex NMR responses in QHF, which has important implications for the development of RDNMR techniques.

6.
Microscopy (Oxf) ; 63(6): 475-9, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25145648

RESUMO

We have developed a method of atomic force microscopy (AFM)-assisted scanning tunneling spectroscopy (STS) under ambient conditions. An AFM function is used for rapid access to a selected position prior to performing STS. The AFM feedback is further used to suppress vertical thermal drift of the tip-sample distance during spectroscopy, enabling flexible and stable spectroscopy measurements at room temperature.

7.
Phys Rev Lett ; 107(17): 170504, 2011 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-22107495

RESUMO

A method is proposed for obtaining the spectrum for noise that causes the phase decoherence of a qubit directly from experimentally available data. The method is based on a simple relationship between the spectrum and the coherence time of the qubit in the presence of a π pulse sequence. The relationship is found to hold for every system of a qubit interacting with the classical-noise, bosonic, and spin baths.

8.
Phys Rev Lett ; 107(12): 126807, 2011 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-22026789

RESUMO

We investigate low-frequency electron spin dynamics in a quantum Hall system with wire confinement by nuclear spin relaxation measurements. We developed a technique to measure the local nuclear spin relaxation rate T(1)(-1). T(1)(-1) is enhanced on both sides of the local filling factor ν(wire)=1, reflecting low-frequency fluctuations of electron spins associated with Skyrmions inside the wire. As the wire width is decreased, the fast nuclear spin relaxation is suppressed in a certain range of Skyrmion density. This suggests that the multi-Skyrmion state is modified and the low-frequency spin fluctuations are suppressed by the wire confinement.

9.
Science ; 313(5785): 329-32, 2006 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-16857933

RESUMO

Resistively detected nuclear spin relaxation measurements in closely separated two-dimensional electron systems reveal strong low-frequency electron-spin fluctuations in the quantum Hall regime. As the temperature is decreased, the spin fluctuations, manifested by a sharp enhancement of the nuclear spin-lattice relaxation rate 1/T1, continue to grow down to the lowest temperature of 66 millikelvin. The observed divergent behavior of 1/T1 signals a gapless spin excitation mode and is a hallmark of canted antiferromagnetic order. Our data demonstrate the realization of a two-dimensional system with planar broken symmetry, in which fluctuations do not freeze out when approaching the zero temperature limit.

10.
Science ; 312(5780): 1634-6, 2006 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-16778051

RESUMO

A bidirectional single-electron counting device is demonstrated. Individual electrons flowing in forward and reverse directions through a double quantum dot are detected with a quantum point contact acting as a charge sensor. A comprehensive statistical analysis in the frequency and time domains and of higher order moments of noise reveals antibunching correlation in single-electron transport through the device itself. The device can also be used to investigate current flow in the attoampere range, which cannot be measured by existing current meters.

11.
Phys Rev Lett ; 94(14): 146601, 2005 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15904087

RESUMO

We show that electron-nuclear spin coupling in semiconductor heterostructures is strongly modified by their potential inversion asymmetry. This is demonstrated in a GaAs quantum well, where we observe that the current-induced nuclear spin polarization at Landau-level filling factor nu=2/3 is completely suppressed when the quantum well is made largely asymmetric with gate voltages. Furthermore, we find that the nuclear spin relaxation rate is also modified by the potential asymmetry. These findings strongly suggest that even a very weak Rashba spin-orbit interaction can play a dominant role in determining the electron-nuclear spin coupling.

12.
Nature ; 434(7036): 1001-5, 2005 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-15846341

RESUMO

The analytical technique of nuclear magnetic resonance (NMR) is based on coherent quantum mechanical superposition of nuclear spin states. Recently, NMR has received considerable renewed interest in the context of quantum computation and information processing, which require controlled coherent qubit operations. However, standard NMR is not suitable for the implementation of realistic scalable devices, which would require all-electrical control and the means to detect microscopic quantities of coherent nuclear spins. Here we present a self-contained NMR semiconductor device that can control nuclear spins in a nanometre-scale region. Our approach enables the direct detection of (otherwise invisible) multiple quantum coherences between levels separated by more than one quantum of spin angular momentum. This microscopic high sensitivity NMR technique is especially suitable for probing materials whose nuclei contain multiple spin levels, and may form the basis of a versatile multiple qubit device.

13.
Nature ; 419(6904): 278-81, 2002 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-12239561

RESUMO

The strength of radiative transitions in atoms is governed by selection rules that depend on the occupation of atomic orbitals with electrons. Experiments have shown similar electron occupation of the quantized energy levels in semiconductor quantum dots--often described as artificial atoms. But unlike real atoms, the confinement potential of quantum dots is anisotropic, and the electrons can easily couple with phonons of the material. Here we report electrical pump-and-probe experiments that probe the allowed and 'forbidden' transitions between energy levels under phonon emission in quantum dots with one or two electrons (artificial hydrogen and helium atoms). The forbidden transitions are in fact allowed by higher-order processes where electrons flip their spin. We find that the relaxation time is about 200 micro s for forbidden transitions, 4 to 5 orders of magnitude longer than for allowed transitions. This indicates that the spin degree of freedom is well separated from the orbital degree of freedom, and that the total spin in the quantum dots is an excellent quantum number. This is an encouraging result for potential applications of quantum dots as basic entities for spin-based quantum information storage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...